新知榜官方账号
2023-07-10 09:24:31
谷歌AI发布了一款名为MediaPipeObjectron的算法框架,利用这个算法框架,只要一部手机,就能实时从2D视频里识别3D物品的位置、大小和方向。这一技术可以帮助机器人,自动驾驶汽车,图像检索和增强现实等领域实现一系列的应用。
MediaPipe是一个开源代码跨平台框架,主要用于构建处理不同形式的感知数据,而Objectron在MediaPipe中实现,并能够在移动设备中实时计算面向对象的3D边界框。
在计算机视觉领域里,跟踪3D目标是一个棘手的问题,尤其是在有限的计算资源上,例如,智能手机上。由于缺乏数据,以及需要解决物体多样的外观和形状时,而又仅有可2D图像可用时,情况就会变得更加困难。
为了解决这个问题,谷歌Objectron团队开发了一套工具,可以用来在2D视频里为对象标注3D边界框,而有了3D边界框,就可以很容易地计算出物体的姿态和大小。注释器可以在3D视图中绘制3D边界框,并通过查看2D视频帧中的投影来验证其位置。对于静态对象,他们只需在单个帧中注释目标对象即可。为了补充现实世界的训练数据以提高AI模型预测的准确性,该团队还开发了一种名为ARSyntheticDataGeneration的新颖方法。
它可以将虚拟对象放置到具有AR会话数据的场景中,允许你利用照相机,检测平面和估计照明,来生成目标对象的可能的位置,以及生产具有与场景匹配的照明。这种方法可生成高质量的合成数据,其包含的渲染对象能够尊重场景的几何形状并无缝地适配实际背景。
通过上述两个方法,谷歌结合了现实世界数据和增强现实合成数据,将检测准确度度提高了10%。当前版本的Objectron模型还足够“轻巧”,可以在移动设备上实时运行。借助LGV60ThinQ,三星GalaxyS20+和SonyXperia1II等手机中的Adreno650移动图形芯片,它能够每秒处理约26帧图像,基本做到了实时检测。
谷歌团队表示:“我们希望通过与更多的研究员和开发者共享我们的解决方案,这将激发新的应用案例和新的研究工作。我们计划在未来将模型扩展到更多类别,并进一步提高设备性能。”
微信扫码咨询
相关工具
相关文章
推荐
阿里Accio中文版上线!一键搞定复杂采购
2025-08-19 09:13
视频“用嘴编辑”的时代来了,但钱包顶得住吗?
2025-08-15 17:59
智谱新模型GLM-4.5V全面开源,玩家们有福啦!
2025-08-12 17:56
扎心文案+AI插画=爆款!揭秘8万赞视频的制作全流程
2025-08-12 10:08
GPT-5没你想的那么好,附实测体验~
2025-08-11 11:07
一站式搞定AI绘图+视频,AI短片效率飙升的秘密在这儿!
2025-08-08 09:26
打工人新神器!10款国产AI,让你告别996!
2025-08-08 09:24
豆包视觉推理深度体验,AI也能“边看边想”了!
2025-08-08 09:19
300美元的AI男友来了!马斯克的情感生意从女友做到男友
2025-08-01 17:56
Agent智能体:2025年企业新员工,月薪仅需一度电?
2025-07-30 17:49