生成式AI的未来:机遇与挑战

新知榜官方账号

2023-10-18 01:36:46

生成式AI的前景

最近,一家知名银行的CEO给我打电话,讨论了生成式AI的前景。我们最初会通过各种场景改善欺诈检测和客户服务,但随着最近一系列新闻的不断发布,很明显他有更大野心。和许多行业一样,银行业也存在劳动力问题:对熟练员工的需求,与愿意回到办公室并遵守疫情前规则的工人供应之间存在着差距。他认为生成式AI也许能解决这个问题。这些新工具可以通过自动化降本增效,但它们是否也能解决人才短缺问题?简单地说:AI多久能取代人类员工?

这个对话呼应了去年11月以来我与许多企业高管的谈话,这些高管来自保险、制造、制药,甚至好莱坞的电影公司——他们的编剧和演员现在正在罢工。他们都想知道如何用更少的人力资源创造更大价值。这么问是因为,去年秋天OpenAI开发的聊天机器人ChatGPT突然走红,展示了AI自主生成电子邮件、论文、食谱、财务报告、文章和想法的能力。高盛估计,在未来十年内,3亿工作岗位将会被淘汰或大量减少。动荡开始出现。

“提示工程师”(promptengineers),即要求ChatGPT等系统生成内容的人,这一职位的发布上提供了30万美元或更高的年薪。OpenAI的GPT-4通过了美国律师执照考试,并暗示了在不久的将来,我们可能就不需要律师来处理交易工作了。事实上,沃尔玛正在制作一个生成式AI系统的原型(与OpenAI无关)来制定部分供应商合同;另一方面,75%的合同律师和采购人员表示,比起人类同行,他们现在更喜欢与AI谈判。谷歌的Med-PaLM2是一种专门训练医学知识的模型,现在正以医生的专家水平回答医学检查问题。2023年夏天,合作伙伴将开始测试可以查看X光并自动撰写乳腺X光检查报告的应用程序,且无需人类医生参与。这一领域的发展速度惊人,难怪这么多高管得出了同样结论:短短几年内,强大的AI系统将在与人类劳动力相同(甚至更高)的水平上执行认知工作。

受到AI可能性的诱惑,担忧寻找和留住合格员工,并因最近的市场调整或未达到分析师预期而感到不自信,商业领袖们设想,未来的工作场所中不会有今天这么多人。在我看来,这是一个巨大误判。首先,现在想明确预测AI的未来还为时过早——特别考虑到生成式AI只是相互关联领域中的一个小领域,而每个领域都处于不同的开发阶段。AI将会以及何时淘汰哪些工作,还都只是猜测。对于一个AI系统来说,仅仅执行一项任务是不够的;其成果必须被证明是值得信赖的,集成到现有工作流程中,并针对合规性、风险和监管问题进行了管理。其次,在技术带来快速颠覆的时期,领导者会过于关注眼前收益,而不是其价值网络在未来将如何转变。随着AI的发展,它将需要我们在完全了解未来之前,随时重新构想整个业务领域。

领导者可以采取以下步骤应对生成式AI和人力共存、未来将以未知方式发展的不确定世界。首先,降低对生成式AI能够以及将会为业务做什么的期望。从历史上看,AI经历了几个阶段,包括突破、资金激增和主流兴趣的短暂时刻,然后是未达到预期和资本减持。1970年,有影响力的计算机科学家、AI的创始人之一马文·明斯基(MarvinMinsky)告诉《生活》(Life)杂志,通用人工智能——一种认知能力与人难分上下的AI——再有三年就会出现。20世纪70年代,这种AI所需的计算能力还不存在,超级计算机大多是理论上的。个人电脑也是如此。Datapoint2200及其处理器最终成为了我们后来所知的个人电脑的重要基础。明斯基和其同事承诺的宏伟抱负从未实现,资金和兴趣也至此枯竭。1987年,这种情况再次发生,计算机科学家和企业再次对AI的时间表做出了大胆承诺,却依然碰壁。尽管功能强大,但今天主流的生成式AI工具,ChatGPT、Midjourney、DALL-E2,还不是完成品。很快,人们就会对它们的新颖感到不满,并意识到虽然AI可以创建内容,但还不足以实际应用。同样,在医学、气候和生命科学领域的特定AI工具方面,现在还处于早期阶段。为了让生成式AI实现被承诺的奇迹,即规模和成本效益,要做的工作还有很多。记住,这些工具直到最近都还只是理论上的。

商业数据是无价的,因为一旦模型经过训练,将这些数据转移到另一个系统就可能非常昂贵,技术上也很麻烦。目前新兴的平台间很难互相操作,设计就是如此。生成式AI平台正在演变成围墙花园,在那里,创造技术的公司控制着他们生态系统的各个方面。最大的AI公司正在争夺市场份额,以及使他们的模型最具竞争力所需的大量数据。通过向公司推销他们的平台,他们希望锁定它们,与他们的数据。今天AI系统的创建,使用的是一种被称为强化学习机制(RHLF)的技术。本质上,AI系统需要持续的人为反馈,否则就会有学习和记忆错误信息的风险。数据输入越多,需要的注释、标签和训练就越多。今天,在肯尼亚和巴基斯坦等地,这项工作已经实现了自动化。随着AI的成熟,对有专家知识专家的需求也在出现。我见过的许多商业领袖都没有计划未来包括一个内部RHLF部门,负责持续监控、审计和调整AI系统和工具。相反,应该有一个专门团队负责监控生成式AI系统的学习,以及相关的网络安全挑战,他们应该开发简短的“假设”情景,想象可能会出现的错误。同样,随着AI的发展,释放新增长的机会也会随之而来。这意味着企业还应该有一个专门的内部业务开发团队,为新兴工具提高生产力和效率、促进产品开发、刺激创新等多种方式,开发近期和长期情景。

在这个充满变革和不确定的时期,组织能做的最好的事情,就是有条不紊地规划未来。这就需要我们了解生成式AI的局限和优势,并采取持续评估和改进的文化。领导者应该抵制减少员工的诱惑,利用战略远见创造未来。在这个未来中,高技能的员工可以利用AI,人类和AI团队合作会比各自单独工作,有更高的生产力、创造力和效率。

本页网址:https://www.xinzhibang.net/article_detail-17072.html

寻求报道,请 点击这里 微信扫码咨询

关键词

生成式AI 机遇 挑战

分享至微信: 微信扫码阅读

相关工具

相关文章

相关快讯