新知榜官方账号
2023-09-25 18:52:21
This study investigates the potential utility of artificial intelligence in diagnostic radiology to improve diagnostic performance for cardiopulmonary events. Findings on the performance of an AI convolutional neural network prototype that automatically detects pulmonary nodules and quantifies coronary artery calcium volume on low-dose chest CT are presented. The AI prototype rapidly and accurately identifies significant risk factors for cardiopulmonary disease on standard screening low-dose chest CT, which can be used to improve diagnostic ability, facilitate intervention, improve morbidity and mortality, and decrease healthcare costs.
Artificial intelligence (AI) in diagnostic radiology is undergoing rapid development. It has the potential to improve diagnostic performance for cardiopulmonary events, but its accuracy and precision have yet to be demonstrated in the context of current screening modalities. Here, we present findings on the performance of an AI convolutional neural network (CNN) prototype (AI-RADCompanion, Siemens Healthineers) that automatically detects pulmonary nodules and quantifies coronary artery calcium volume (CACV) on low-dose chest CT (LDCT), and compare results to expert radiologists. We also correlate AI findings with adverse cardiopulmonary outcomes in a retrospective cohort of 117 patients who underwent LDCT.
A total of 117 patients were enrolled in this study. Two CNNs were used to identify lung nodules and CACV on LDCT scans. All subjects were used for lung nodule analysis, and 96 subjects met the criteria for coronary artery calcium volume analysis. Interobserver concordance was measured using ICC and Cohen's kappa. Multivariate logistic regression and partial least squares regression were used for outcomes analysis.
Agreement of the AI findings with experts was excellent (CACV ICC = 0.904, lung nodules Cohen's kappa = 0.846) with high sensitivity and specificity (CACV: sensitivity = .929, specificity = .960; lung nodules: sensitivity = 1, specificity = 0.708). The AI findings improved the prediction of major cardiopulmonary outcomes at 1-year follow-up including major adverse cardiac events and lung cancer (AUC = 0.911, AUC = 0.942).
We conclude the AI prototype rapidly and accurately identifies significant risk factors for cardiopulmonary disease on standard screening low-dose chest CT. This information can be used to improve diagnostic ability, facilitate intervention, improve morbidity and mortality, and decrease healthcare costs. There is also potential application in countries with limited numbers of cardiothoracic radiologists.
关键词
artificial intelligence lung nodules coronary artery calcium low-dose CT scans screening modalities
相关工具
相关文章
相关快讯
推荐
300美元的AI男友来了!马斯克的情感生意从女友做到男友
2025-08-01 17:56
Agent智能体:2025年企业新员工,月薪仅需一度电?
2025-07-30 17:49
国产GLM-4.5把AI价格打到地板价,实测强到离谱!
2025-07-30 09:08
用AI批量生成治愈系漫画,月入2000+
2025-07-29 09:59
千亿市场规模背后,AI短剧商业化迎来爆发期?
2025-07-17 09:19
15个作品涨粉26万!AI历史账号又出王炸案例!
2025-07-09 09:37
亲测真香!这6个AI工具让工作效率翻倍,同事追着问链接
2025-06-17 16:21
FLUX.1 Kontext 一出,AI生图领域 “地震” 了!
2025-06-06 15:38
用Deepseek写AI绘图提示词,像呼吸一样简单!
2025-02-19 16:12
你以为AI绘画是黑科技?其实早成了“路边摊生意”!
2025-02-19 10:15