基于人工智能和深度学习的现代计算机视觉技术

新知榜官方账号

2023-07-10 09:12:41

基于人工智能和深度学习的现代计算机视觉技术

深度学习是机器学习技术的一个分支,由人工神经网络组成分类识别器,其工作原理是教机器通过实例学习,为神经网络提供特定类型数据的标记示例,然后提取这些示例之间的共同模式,将其转换为包含这些信息的神经网络模型,这有助于对未来获取的信息进行分类。基于深度学习技术的视觉检测,可以实现定位,区分缺陷、字符识别等,在运行过程中,实现模拟人类视觉检测效果。

卷积神经网络

卷积神经网络即CNN,有着它特殊的功能,网络中保留了空间信息,因此可以更好地适用于图像分类问题。原理来源于人类视觉生物学数据的启发,视觉基于多个皮质层,每层识别越来越多的结构性信息。我们看到的是很多单个的像素;然后从这些像素中,识别出几何组成;再然后……这样越来越多的复杂的元素,如物体、面部、人类躯干、动物等被识别出来。科亿科技的AI图像视觉检测使用卷积神经网络,更侧重的是网络级联,针对不同场景设计不同的网络级联方法,更准确反映图像特征,使得在进行视觉检测的时候更精准。

集成AI视觉检测系统

通常集成一个AI视觉检测系统,需要从业务和技术分析开始。首先要明确系统应该检测什么样的缺陷?在什么样的环境下使用?需要提前明确的重要问题包括:AI检测应该是实时的还是延时的?AI视觉检测应该如何彻底检测缺陷,是否应该按类型区分?是否有任何现有的软件可以集成视觉检测功能,还是需要从头开始开发?系统应如何将检测到的缺陷通知用户?AI视觉检测系统是否应该记录缺陷检测统计数据?关键问题是:是否存在用于深度学习模型开发的数据,包括“好”和“坏”产品的图像以及不同类型的缺陷?

收集和准备数据

在深度学习模型开发之前,需要收集和准备数据。科亿科技历经十余年的不断开发优化,拥有强大丰富的算法库,当面对新产品检测时,可根据算法库调取,进行增量/继承学习,即原有训练结果上新增少量样本,极大的缩短了新产品的训练时间,实现快速学习。

训练和评估

采集新增样本后,下一步是对其进行训练,验证和评估模型的性能和结果准确性。

部署和改进

在部署视觉检测模型时,重要的是要考虑软件和硬件系统架构如何与模型容量对应。AI视觉检测系统的应用案例包装容器:适用于产品的品质把控,用于检测产品外观缺陷,如黑点、飞边、缺口、模号等。锂电池:锂电生产中密封钉焊接、顶盖焊接等常会出现针孔、砂眼、划痕、凹凸、偏焊等瑕疵。

本页网址:https://www.xinzhibang.net/article_detail-7358.html

寻求报道,请 点击这里 微信扫码咨询

关键词

人工智能 深度学习 计算机视觉

分享至微信: 微信扫码阅读

相关工具

相关文章