AI行业应用:数据编织助力AI应用训练突破

新知榜官方账号

2023-07-04 10:16:42

一、产品背景

“最近身边再次响起了讨论AI的声音,与前两年对AI持观望态度不同,很多人都说随着ChatGPT应用,AI时代真的来了,产品、运营同学们都在忙着了解什么是ChatGPT、什么是StableDiffusion等等,但是算法工程师却在疯狂头疼,疯狂抱怨,领导要求他们尽快搞出大模型,尽快提升算法模型指标,服务业务,路过算法组听到张工和胡工的以下的对话:

张工:胡哥,你的模型训练的怎么样了啊?

胡工:哎,一言难尽,没数据啊,好不容易跟业务部门提了数据,他们不是收集不上来,就是收集上来的数据各式各样,没法用啊?

张工:谁不是呢,我这边也是,最近客户的图片,视频加起来10多个T,让我们自己传,光来回导数据就耽误了我们组好长时间。

胡工:你说要是公司能搞个数据平台,让我们快速获取数据多好啊,日常把数据收集管理好,用的时候就省事多了。”

听到以上的对话,我灵机一动,最近基于数据编织想法给客户做的数据管理平台不就刚好可以解决他们问题嘛,于是我赶紧给他们做了详细的产品介绍,讲述下如何通过“数据编织”的设计理念建设数据管理平台帮助用户突破AI在应用训练中的数据瓶颈。

二、AI训练应用难点

除去人员主观问题外,我们将AI应用训练的客观难点进行总结,可以概括为以下三点:

  • 高质量数据
  • 高效算力
  • 成熟框架

三、数据是否是AI应用的瓶颈?

从IDC分析报告可以看出,其中有29%的用户认为人工智能的应用缺少训练和测试数据,85%的用户认为至少花费了一半以上的工作量用于准备数据。既然数据被证实确实是AI应用的瓶颈,那么就可以考虑从数据寻找切入点,以提供统一标准、快速访问的大批量的高可用数据源为定位开展产品规划。

四、产品设计

在传统数据管理平台基础上采用“数据编织+知识图谱”的理念进行变革设计,从数据存储、快速访问、统一标准三个问题入手,设计了一款“数据找人”的智能化数据管理平台。

五、结论

本文围绕AI应用训练的瓶颈展开叙述,对AI训练难点进行总结并结合IDC分析报告,得出“数据”是最大瓶颈的结论,并针对该问题思考解决策略。以数据编织和知识图谱的理念进行产品变革设计,从产品定位、产品架构、应用场景等角度详细介绍了一款“数据找人”的智能化数据管理平台,同时还介绍了产品后续的商业推广思路及建设路径,对有数据应用场景的客户,如AI训练平台,数据标注平台,甚至是传统数据管理产品需要改造升级的客户可以提供帮助。

本页网址:https://www.xinzhibang.net/article_detail-5309.html

寻求报道,请 点击这里 微信扫码咨询

关键词

AI应用训练 数据编织 知识图谱

分享至微信: 微信扫码阅读

相关工具

相关文章

相关快讯